What are bounding chains, and why are they related to linking numbers?

Xujia Chen

Sept 21, 2021

Gromov-Witten invariants

(X, ω) : compact symplectic manifold of $\operatorname{dim} 2 n$
J : generic ω-tame almost complex structure
$B \in H_{2}(X)$,
$H_{1}, \ldots, H_{l} \subset X$: closed submanifolds in general position such that $2\left(c_{1}(T X) \cdot B+n-3+l\right)=\sum_{i} \operatorname{codim} H_{i}$, $\left[H_{1}\right], \ldots,\left[H_{l}\right] \in H_{*}(X)$: their homology classes,

Gromov-Witten invariants
$\left\langle\left[H_{1}\right], \ldots,\left[H_{l}\right]\right\rangle_{B}^{X} \equiv$
Number of degree B J-holomorphic rational curves in X passing through H_{1}, \ldots, H_{l}

This number does not depend on the choices of J and H_{1}, \ldots, H_{l} in $\left[H_{1}\right], \ldots,\left[H_{l}\right]$.

Gromov-Witten invariants

$\mathfrak{M}_{l}(B) \equiv$ moduli space of $\operatorname{deg} B$ rational J-holomorphic curves in X with l marked points (can be viewed as a smooth manifold)

$\overline{\mathfrak{M}}_{l}(B) \equiv$ moduli space of deg B nodal rational J-holomorphic curves in X with l marked points (can be viewed as a compact, smooth manifold)

$$
\begin{aligned}
& \left\langle\left[H_{1}\right], \ldots,\left[H_{l}\right]\right\rangle_{B}^{X}=\text { intersection number of } \\
& \qquad \overline{\mathfrak{M}}_{l}(B) \xrightarrow{\text { ev }} \underbrace{X \times \ldots \times X}_{l \text { times }} \hookleftarrow H_{1} \times \ldots \times H_{l}
\end{aligned}
$$

open Gromov-Witten "invariants"

$(X, \omega), J$ as before
$Y \subset X$ Lagrangian submanifold, oriented, Spin
$\beta \in H_{2}(X, Y)$,
$H_{1}, \ldots, H_{l} \subset X$: even-dimensional closed submanifolds,
$p_{1}, \ldots, p_{k} \in Y$ points
such that $\mu(\beta)+n-3+k+2 l=\sum_{i} \operatorname{codim} H_{i}+k n$,

Define
$\operatorname{Disk}\left(\beta,\left\{p_{i}\right\}_{i=1}^{k},\left\{H_{i}\right\}_{i=1}^{l}\right) \equiv$
\{degree βJ-holomorphic disks in X with boundaries in Y, passing through $p_{1}, \ldots, p_{k}, H_{1}, \ldots, H_{l}$. $\}$

open Gromov-Witten "invariants"

$\mathfrak{M}_{k, l}(\beta) \equiv$ moduli space of $\operatorname{deg} \beta$ J-holomorphic disks in X whose boundary lies in Y, with k boundary and l interior marked points (can be viewed as a smooth manifold)

$\overline{\mathfrak{M}}_{k, l}(\beta) \equiv \operatorname{moduli}$ space of $\operatorname{deg} \beta$ nodal J-hol disks in X whose boundary lies in Y,
with k boundary and l interior marked points (can be viewed as a compact, smooth manifold with boundary)

open Gromov-Witten "invariants"

$\left|\operatorname{Disk}\left(\beta,\left\{p_{i}\right\},\left\{H_{i}\right\}\right)\right|^{ \pm}=$intersection number of

$$
\overline{\mathfrak{M}}_{k, l}(\beta) \xrightarrow{\text { ev }} \underbrace{Y \times \ldots \times Y}_{k \text { times }} \times \underbrace{X \times \ldots \times X}_{l \text { times }} \hookleftarrow p_{1} \times \ldots \times p_{k} \times H_{1} \times \ldots \times H_{l}
$$

Not an invariant: it may depend on $J, p_{1}, \ldots, p_{k}, H_{1}, \ldots, H_{l}$.
open Gromov-Witten "invariants"

$$
\overline{\mathfrak{M}}_{k, l}(\beta) \xrightarrow{\text { ev }} \underbrace{Y \times \ldots \times Y}_{k \text { times }} \times \underbrace{X \times \ldots \times X}_{l \text { times }} \hookleftarrow p_{1} \times \ldots \times p_{k} \times H_{1} \times \ldots \times H_{l}
$$

e.g. we move H_{1} around:a disk passing through $p_{1}, \cdots, H_{1}, \cdots, H_{l}$

a disk passing through $p_{11}, \cdots, H_{1}^{\prime}, \cdots, H_{1}$

nothing passes through $P_{11} \cdots, H_{11}^{\prime \prime}, \cdots, H_{1}$
Q:How do we define invariant disk counts?

Some definitions relevant to today

Fukaya(2011) defined open GW-invariants for Calabi-Yau 3-folds in terms of A_{∞}-algebras of differential forms

Welschinger(2013) defined invariant disk counts when $n=3$, which counts multi-disks with "self-linking numbers"
(Tian expressed belief that Welschinger's definition is a geometric interpretation of Fukaya-type algebra.)

Solomon-Tukachinsky(2016) defined open GW-invariants generalizing Fukaya(2011) for all n odd, if Y is a \mathbb{Q}-homology sphere. Their construction is based on the idea of "bounding chains" in $\mathrm{FOOO}(2006)$.

My work in 2019 translated Solomon-Tukachinsky's construction into a more geometric language, from which it immediate follows that these invariants are the same as Welschinger's when $n=3$.

Today: show you what this construction looks like.

Welschinger's definition

Welschinger(2013) defined invariant disk counts when $n=3$ and $H_{1}(Y) \hookrightarrow H_{1}(X)$. Idea: count multi-disks weighted by "self-linking number".

Recall:
$\operatorname{dim} X=6, \operatorname{dim} Y=3$
For γ_{1}, γ_{2} oriented loops in Y, such that
$\gamma_{1} \cap \gamma_{2}=\emptyset, \gamma_{1}=\partial b_{1}, \gamma_{2}=\partial b_{2}$, their linking number is defined as $\operatorname{lk}\left(\gamma_{1}, \gamma_{2}\right) \equiv\left|\gamma_{1} \cap b_{2}\right|^{ \pm}$.

Welschinger's definition

Idea: count multi-disks weighted by "self-linking number".

For u a multi-disk as shown, define
$K_{u}=$ complete graph with vertex set $\left\{u_{i}\right\}$,

$$
\operatorname{lk}(u) \equiv \sum_{\substack{T: \text { spanning tree } \\
\text { in } K_{u}}} \prod_{\begin{array}{c}
e: \text { an edge } \\
\text { connecting } u_{i}, u_{j}
\end{array}} \operatorname{lk}\left(\partial u_{i}, \partial u_{j}\right)
$$

Welschinger's definition

Idea: count multi-disks weighted by "self-linking number".

We count u with weight $\pm \operatorname{lk}(u)$.
The count is independent of the choices of $J,\left\{p_{i}\right\}$ and $H_{i} \in\left[H_{i}\right]$.

Welschinger's definition

Idea: count multi-disks weighted by "self-linking number".

Why invariant?

Let us move, say, H_{1} around:

$$
H_{1} \leadsto H_{1}^{\prime} \leadsto H_{1}^{\prime \prime}
$$$\leadsto 8 \leadsto \phi \leftarrow$ count of single disks changes by 1

Welschinger's definition

Idea: count multi-disks weighted by "self-linking number".

Why invariant?
Let us move, say, H_{1} around:

$$
\begin{aligned}
& H_{1} \leadsto H_{1}^{\prime} \leadsto H_{1}^{\prime \prime} \\
& 0 \leadsto 8 \leadsto \phi \leftarrow \text { count of single disks changes by I } \\
& B \leftarrow \text { count of bi-disks also changes by } 1
\end{aligned}
$$

Attempt of generalizing to higher dimensions

Recall: for $\beta \in H_{2}(X, Y), K \subset\left\{p_{1}, \ldots, p_{k}\right\}, L \subset\left\{H_{1}, \ldots, H_{l}\right\}$, $\operatorname{dim} \operatorname{Disk}(\beta, K, L)=\mu(\beta)+n-3-|K|(n-1)-\sum_{H_{i} \in L}\left(\operatorname{codim} H_{i}-2\right)$

Suppose $\left(\beta,\left\{p_{1}, \ldots, p_{k}\right\},\left\{H_{1}, \ldots, H_{l}\right\}\right)$ is such that $\operatorname{dim} \operatorname{Disk}\left(\beta,\left\{p_{i}\right\},\left\{H_{i}\right\}\right)=0$, and
$\beta=\beta_{1}+\beta_{2},\left\{p_{1}, \ldots, p_{k}\right\}=K_{1} \sqcup K_{2},\left\{H_{1}, \ldots, H_{l}\right\}=L_{1} \sqcup L_{2}$, then $\operatorname{dim} \operatorname{Disk}\left(\beta_{1}, K_{1}, L_{1}\right)+\operatorname{dim} \operatorname{Disk}\left(\beta_{2}, K_{2}, L_{2}\right)=n-3$.

Both terms can be positive, so "counting bi-disks" no longer makes sense.

Attempt of generalizing to higher dimensions

Suppose ($\beta,\left\{p_{1}, \ldots, p_{k}\right\},\left\{H_{1}, \ldots, H_{l}\right\}$) is such that $\operatorname{dim} \operatorname{Disk}\left(\beta,\left\{p_{i}\right\},\left\{H_{i}\right\}\right)=0$, and
$\beta=\beta_{1}+\beta_{2},\left\{p_{1}, \ldots, p_{k}\right\}=K_{1} \sqcup K_{2},\left\{H_{1}, \ldots, H_{l}\right\}=L_{1} \sqcup L_{2}$, then $\operatorname{dim} \operatorname{Disk}\left(\beta_{1}, K_{1}, L_{1}\right)+\operatorname{dim} \operatorname{Disk}\left(\beta_{2}, K_{2}, L_{2}\right)=n-3$.

Denote

$$
\operatorname{Disk} \widehat{(\beta, K}, L)=\bigsqcup_{u \in \operatorname{Disk}(\beta, K, L)} \partial u
$$

then

$\operatorname{dim} \operatorname{Disk}\left(\widehat{\beta_{1}, K_{1}}, L_{1}\right)+\operatorname{dim} \operatorname{Disk}\left(\widehat{\beta_{2}, K_{2}}, L_{2}\right)=n-1$, the correct dimension to define linking numbers in Y.

Attempt of generalizing to higher dimensions

So, we can define "count of $\left(\beta_{1}, K_{1}, L_{1}\right),\left(\beta_{2}, K_{2}, L_{2}\right)$-bi-disks" to be the linking number between $\operatorname{Disk}\left(\widehat{\beta_{1}, K_{1}}, L_{1}\right)$, $\operatorname{Disk}\left(\widehat{\beta_{2}, K_{2}}, L_{2}\right)$, if they are closed.

Not the case: Disk $\widehat{(\beta, K}, L)$ usually has boundary

Goal: for every triple (β, K, L), we want to make $\operatorname{Disk} \widehat{(\beta, K}, L)$ closed.

The idea of bounding chains

We are going to "close up" Disk($\beta, K, L)$ inductively, by gluing manifolds to its boundaries.

Suppose for every triple ($\beta^{\prime}, K^{\prime}, L^{\prime}$) such that

$$
\beta^{\prime}<\beta, K^{\prime} \subset K, L^{\prime} \subset L
$$

we have already constructed a closed submanifold $\mathfrak{b b}\left(\beta^{\prime}, K^{\prime}, L^{\prime}\right)$ of Y containing Disk $\left.\widehat{\left(\beta^{\prime}, K^{\prime}\right.}, L^{\prime}\right)$.

Since Y is a homology sphere, we can take $\mathfrak{b}\left(\beta^{\prime}, K^{\prime}, L^{\prime}\right)$ a submanifold with boundary in Y, such that

$$
\partial \mathfrak{b}\left(\beta^{\prime}, K^{\prime}, L^{\prime}\right)=\mathfrak{b b}\left(\beta^{\prime}, K^{\prime}, L^{\prime}\right)
$$

The idea of bounding chains
Then, for a boundary component of $\operatorname{Disk} \widehat{(\beta, K}, L)$:

The idea of bounding chains

Then, for a boundary component of $\operatorname{Disk} \widehat{(\beta, K}, L)$:

$\bigcirc=$ boundaries of disks in $\operatorname{Disk}\left(\beta_{1}, K_{1}, L_{1}\right)$ passing through
$\operatorname{Disk}\left(\widehat{\beta_{2}, K_{2}}, L_{2}\right)$

The idea of bounding chains

Then, for a boundary component of $\operatorname{Disk} \widehat{(\beta, K}, L)$:

$\bigcirc=$ boundaries of disks in $\operatorname{Disk}\left(\beta_{1}, K_{1}, L_{1}\right)$ passing through
$\operatorname{Disk}\left(\widehat{\beta_{2}, K_{2}}, L_{2}\right)$

We consider the boundaries of disks in $\operatorname{Disk}\left(\beta_{1}, K_{1}, L_{1}\right)$ passing through $\mathfrak{b}\left(\beta_{2}, K_{2}, L_{2}\right)$, and glue this space to \bigcirc.

This closes up the red part of the boundary of $\operatorname{Disk} \widehat{(\beta, K}, L)$.

The idea of bounding chains

More precisely...
We define

$$
\mathfrak{b b}(\beta, K, L)=\bigsqcup_{\eta} \overline{\operatorname{Disk}\left(\beta_{0}, K_{0} \sqcup\left\{\mathfrak{b}\left(\beta_{i}, K_{i}, L_{i}\right)\right\}_{i=1}^{k}, L_{0}\right)},
$$

where η stands for all possible ways to write

$$
\begin{aligned}
\beta & =\beta_{0}+\beta_{1}+\ldots+\beta_{k} \\
K & =K_{0} \sqcup K_{1} \sqcup K_{2} \sqcup \ldots \sqcup K_{k} \\
L & =L_{0} \sqcup L_{1} \sqcup L_{2} \sqcup \ldots \sqcup L_{k}
\end{aligned}
$$

i.e. all possible ways to split (β, K, L) into a "base" $\left(\beta_{0}, K_{0}, L_{0}\right)$ and "branches" $\left(\beta_{i}, K_{i}, L_{i}\right), 1 \leq i \leq k$.

The idea of bounding chains

Why is $\mathfrak{b b}(\beta, K, L)$ closed?

The idea of bounding chains
Why is $\mathfrak{b b}(\beta, K, L)$ closed?

$\partial \mathfrak{b b}(\beta, K, L)$ are of two kinds:

and

Because we are summing over all possible splits of (β, K, L), they cancel with each other!

The idea of bounding chains

Now we have defined $\mathfrak{b b}(\beta, K, L)$ for each triple (β, K, L), we can define open GW-invariants "counts of degree β disks passing through $\left\{p_{0}\right\} \sqcup K$ and L " to be $\left|\mathfrak{b b}(\beta, K, L) \cap\left\{p_{0}\right\}\right|^{ \pm}$.

Morally, why invariant:

$$
H_{1} \leadsto H_{1}^{\prime} \longrightarrow H_{1}^{\prime \prime}
$$

Thank you!

