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Gromov-Witten invariants

(X,ω): compact symplectic manifold of dim 2n
J : generic ω-tame almost complex structure
B ∈ H2(X),
H1, . . . ,Hl ⊂ X: closed submanifolds in general position
such that 2(c1(TX)·B+n−3+l) =

∑
i codimHi,

[H1], . . . , [Hl] ∈ H∗(X): their homology classes,

Gromov-Witten invariants〈
[H1], . . . , [Hl]

〉X
B
≡

Number of degree B J-holomorphic rational
curves in X passing through H1, . . . ,Hl

This number does not depend on the choices of J and H1, . . . ,Hl in
[H1], . . . , [Hl].
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Gromov-Witten invariants

Ml(B) ≡ moduli space of deg B rational
J-holomorphic curves in X with l marked points
(can be viewed as a smooth manifold)

Ml(B) ≡ moduli space of deg B nodal rational
J-holomorphic curves in X with l marked points
(can be viewed as a compact, smooth manifold)

〈
[H1], . . . , [Hl]

〉X
B

= intersection number of

Ml(B)
ev−→ X×. . .×X︸ ︷︷ ︸

l times

←↩ H1×. . .×Hl



WDVV Relations (Kontsevich ’92, Ruan-Tian ’93)

H1 H2

H3 H4

deg B

#

( )
= #

( )H1 H3

H2 H4

deg B

(both sides also pass through H5, . . . ,Hl)

Together with splitting formulas (expressing a nodal count as
counts of its components), this gives relations for Gromov-Witten
invariants.



Idea of proof — lifting homology relation fromM0,4

M0,4 ≡ {(z1, z2, z3, z4) : zi∈P1}/Aut(P1) ≈ P1

[(z1, z2, z3, z4)] → (z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
z1

z2

z3

z4 = σ0 → 0
z1

z3

z2

z4 = σ∞ →∞

· · ·

σ0 σ∞

UM0,4:

π

M0,4

universal family over M0,4
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Idea of proof — lifting homology relation fromM0,4

Ml(B) X l H1×. . .×Hl

M0,4

ev

f: forgetful morphism, mapping a curve to its first 4 marked points

[σ0]=[σ∞]∈H0(M0,4) =⇒ [f−1(σ0)]=[f−1(σ∞)]∈H∗
(
Ml(B)

)
=⇒ The intersection numbers

{
f−1(0)

ev−→ X l ←↩ H1×. . .×Hl

f−1(∞)
ev−→ X l ←↩ H1×. . .×Hl

are equal.



Real case
(X,ω, φ): compact real symplectic manifold of dim 2n
(real means φ : X → X,φ∗ω = −ω, φ2 = id),
J : real (i.e. φ∗J = −J) ω-tame almost complex structure.
Xφ := fixed locus of φ. B ∈ H2(X).
A rational curve C ⊂ X is called real if φ(C) = C.

e.g. X = CPn, φ([z0, . . . , zn]) = [z̄0, . . . , z̄n]; Xφ = RPn.
Every curve given by polynomials with real coefficients is real.

H1,. . ., Hl⊂X closed submanifolds, p1, . . . , pk∈Xφ points, s.t.
c1(X)B+n−3+k+2l=

∑l
i=1codimHi+nk.

Q: Counts of real curves?



Welschinger invariants

Suppose n=2 or 3. Suppose Xφ is oriented in n=3 case.

Theorem (Welschinger ’03,’05 )

The number of degree B real rational J-holomorphic curves
passing through H1,. . . ,Hl, p1,. . . ,pk, counted with appropriate
signs, is independent of J , p1,. . ., pk and H1,. . ., Hl in
[H1],. . ., [Hl]∈H∗(X−Xφ).

In n=2 case, a curve C is
counted with
(−1)#(isolated real nodes of C).
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Welschinger invariants

These numbers are called Welschinger invariants
〈
[H1], . . . , [Hl]

〉φ
B

.

They provide lower bounds of the number of real curves.

Example: first few numbers for CP2 (with H1,. . ., Hl being points)

d=1 d=2 d=3
l=0 1 1 8,10,12
l=1 1 1 6,8,10,12
l=2 1 4,6,8,10,12
l=3 2,4,...,12
l=4 0,2,...,12
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Real WDVV
Solomon’07 proposed WDVV-type relations for Welschinger
invariants for symplectic 4-folds.

Theorem (C.’18): When dim X=4,

Solomon’s relations for Welschinger invariants hold.

Theorem (C.-Zinger’19): When dim X=6,

similar formulas hold for (X,ω, φ) with some finite symmetry.
e.g. CP3 with a real hyperplane reflection.

For many symplectic 4-folds and 6-folds, they completely
determine all Welschinger invariants recursively.
e.g. P2,P1×P1, real blow-ups of P2, P3, P1×P1×P1.

Remark: Solomon-Tukachinsky’19 open WDVV-equations cover
dimension 6 case above, but not dimension 4, since Xφ does not
need to be orientable.
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Real WDVV

Each diagram represents counts of curves of such shape (of total
degree B, and passing through the rest of the constraints as well).

φ p1

H1H2

H

+ p1

H1

H2

= − 2

H1
H2

p1 −2

(some)

p1

H1 H2

(some)

φ
H2

H1H3

H

+
H2

H1

H3

−H3

H1H2

H

−
H3

H1

H2

= 2

H1
H3 H2

+2

(some)

H1
H2 H3

(some)

Together with splitting formulas, these two equations give
WDVV-type relations for Welschinger invariants.



Sketch of proof

τ : P1 −→ P1

[z0, z1] −→ [z̄0, z̄1]
τ

P1

RP1

RMk,l(B) ≡
{
u : P1 → X, J-holomorphic, [u] = B,φ ◦ u = u ◦ τ,
z±1 ,. . ., z

±
l ∈P

1, z−i = τ(z+
i ), x1,. . ., xk∈RP1

}/
AutR(P1)

=moduli space of degree B real rational J-holomorphic

curves with k real and l conjugate pairs of marked points

RMk,l(B) ≡ its compactification by adding in real nodal curves



Sketch of proof
RMk,l(B) has a stratified space structure.

Remark: Curves of shape
φ

never appear in our cases. In
dim 4 this follows from the dimension condition; in dim 6 this is
taken care of by the finite symmetry condition.



Sketch of proof

RM1,2 ≡ moduli space of the relative position of 1 real

and 2 conjugate pairs of marked points on P1

RM0,3 ≡ moduli space of the relative position of 3

conjugate pairs of marked points on P1

RMk,l(B) (Xφ)k×X l

RM1,2(resp. RM0,3)

ev

f

ev([u, x1,. . ., z
±
l ]) =

(
u(x1),. . ., u(xk), u(z+

1 ),. . ., u(z+
l )
)

f([u, x1,. . ., z
±
l ]) = (x1, z

±
1 , z

±
2 )
(
resp. (z±1 , z

±
2 , z

±
3 )
)
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RM1,2 ≡ moduli space of the relative position of 1 real

and 2 conjugate pairs of marked points on P1

RM0,3 ≡ moduli space of the relative position of 3

conjugate pairs of marked points on P1

RMk,l(B) (Xφ)k×X l

RM1,2(resp. RM0,3) May not be orientable!

ev

f

ev([u, x1,. . ., z
±
l ]) =

(
u(x1),. . ., u(xk), u(z+

1 ),. . ., u(z+
l )
)

f([u, x1,. . ., z
±
l ]) = (x1, z

±
1 , z

±
2 )
(
resp. (z±1 , z

±
2 , z

±
3 )
)



Sketch of proof

Idea: lifting homology relations from RM1,2 and RM0,3, together
with bounding manifolds, to incorporate wall-crossing effects
coming from walls that obstruct relative-orientability.



Sketch of proof

I Curves of shape
φ

form (real) codim-1 strata in
RMk,l(B).

I Solomon’06 =⇒ ev|RMk,l(B) is relatively orientable,
relative orientation extends through some codim-1 strata, but
not the others (let’s call them “bad strata”.)

(f : X −→ Y is relatively orientable if f∗w1(Y ) = w1(X);
equivalently, for every x∈X we have an identification between the
orientations of TxX and Tf(x)Y , which varies continuously with x.)
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Sketch of proof

Let Γ⊂RM1,2 (resp. RM0,3) consist of curves of shape

φ

z+
1

z−1

z±2 or z±3

.

Georgieva-Zinger’13 =⇒ Γ is a codim-2 submanifold that bounds
in RM0,3.

We take Y ⊂RM1,2 (resp. RM0,3) s.t.

I ∂Y =Γ, and

I Y ↪→ RM1,2 (resp. RM0,3) is relatively oriented, i.e. NY is
oriented.
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Sketch of proof

Then, in

RMk,l(B)
ev×f−−−→ (Xφ)k×X l×RM1,2

(0,3)

←↩ (p1×. . .×pk×H1×. . .×Hl)︸ ︷︷ ︸
denote by C

×Y,

the intersection numbers

RMk,l(B) · (C × Γ) = ±2 “bad strata”· (C × Y ). (?)

I LHS of (?) would be 0 if everything is orientable.

I RHS of (?) is the wall-crossing effect from obstructions to
relative orientability.
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Sketch of proof

RMk,l(B) · (C × Γ) = ±2 “bad strata”· (C × Y ). (?)

Proof of (?):

RM̂(B) ≡ cut RMk,l(B) open along bad strata
— so it becomes a manifold with boundary. Then, in

RM̂(B)
ev×f−−→ (Xφ)k×X l×RM1,2 ←↩ C×Y ,

relatively orientable

0 = ∂
(
(RM̂ · (C×Y )

)
= RM̂ · ∂(C×Y )︸ ︷︷ ︸

C×Γ

± (∂RM̂)︸ ︷︷ ︸
2“bad strata”

·(C×Y ).

RM̂(B)

C×Y
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Sketch of proof

RMk,l(B) · (C × Γ) = ±2 “bad strata”· (C × Y ). (?)

=⇒

φ x1

z+
1

z−1

z+
2

z−2

+ x1

z+
1

z−1

z−2

z+
2

= − 2

z+
1

z−1

z±2

z∓2

x1 −2

(some)

x1

z+
1

z−1

z+
2

z−2
(some)

φ
z±2

z∓2

z+
1

z−1

z+
3

z−3

+
z±2

z∓2

z+
1

z−1

z−3

z+
3

−z
±
3

z∓3

z+
1

z−1

z+
2

z−2

−z
±
3

z∓3

z+
1

z−1

z−2

z+
2

= 2

z+
1

z−1

z±3

z∓3

z+
2

z−2

+2

(some)

z+
1

z−1

z±2

z∓2

z+
3

z−3
(some)

LHSs = counts of curves represented by Γ ⊂ RM1,2 (resp. RM0,3)
RHSs = counts of curves in “bad strata”, cut out by Y



Sketch of proof – splitting

Splitting of RHS of (?):
a dimension count + good choice of Y =⇒

For all bad strata contributing to RHS,

I 1st bubble is rigid

I cut out by Y = fixing position of node on
the 1st bubble w�



Sketch of proof – splitting

Splitting of LHS of (?):

n=2: immediate, since generically two curves
intersect at a fixed number of points in X
n=3: a dimension count ⇒ only two cases:

I real bubble is rigid ⇒ #(nodal curves)=
#(real bubble)·#(complex bubble, with an
additional constraint)

I complex bubble is rigid ⇒ #(nodal curves)=
#(complex bubble)·#(real bubble, with an
additional complex constraint)

We need to determine the homology class of this
constraint in H∗(X−Xφ).
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Sketch of proof – splitting

We need to determine the homology class of the
complex bubble in H∗(X−Xφ).

Idea: use a finite group action G⊂Aut(X,ω, φ) s.t.

H2(X−Xφ)G ≈ H2(X).

Take constraints H1, . . . ,Hl to be G-invariant =⇒
The complex bubble is G-invariant, and thus
determined.



Sketch of proof – splitting

We need to determine the homology class of the
complex bubble in H∗(X−Xφ).

Idea: use a finite group action G⊂Aut(X,ω, φ) s.t.

H2(X−Xφ)G ≈ H2(X).

Take constraints H1, . . . ,Hl to be G-invariant =⇒
The complex bubble is G-invariant, and thus
determined.



A remark on G

In the presence of such a group action, the invariants are defined

even when sphere bubbling (curves of shape
φ

) appears —
the group action cancels such things in pairs.



Real WDVV

φ p1

H1H2

H

+ p1

H1

H2

= − 2

H1
H2

p1 −2

(some)

p1

H1 H2

(some)

φ
H2

H1H3

H

+
H2

H1

H3

−H3

H1H2

H

−
H3

H1

H2

= 2

H1
H3 H2

+2

(some)

H1
H2 H3

(some)

+
splitting formulas

⇓

WDVV-type relations for Welschinger invariants



Thank you!


